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1 Preface
About this Document

This document provides software optimization information and recommendations for programming the AMD
Family 16h processor.

Audience

This guide is intended for compiler and assembler designers, as well as C, C++, and assembly language
programmers writing performance-sensitive code sequences. This guide assumes that you are familiar with the
AMD64 instruction set and the AMD64 architecture (registers and programming modes).

References

For complete information on the AMD64 architecture and instruction set, see the multi-volume AMD64
Architecture Programmer’s Manual available from AMD.com. Individual volumes and their order numbers are
provided below:

Title Publication Order
Number

Volume 1: Application Programming 24592

Volume 2: System Programming 24593

Volume 3: General-Purpose and System Instructions 24594

Volume 4: 128-Bit and 256-Bit Media Instructions 26568

Volume 5: 64-Bit Media and x87 Floating-Point Instructions 26569

The following documents provide a useful set of guidelines for writing efficient code that have general
applicability to Family 16h processors:

• AMD Family 15h Processors Software Optimization Guide (Order # 47414)
• Software Optimization Guide for AMD Family 10h and 12h Processors (Order # 40546)

Refer to BIOS and Kernel Developers Guide (BKDG) for AMD Family 16h Models 00h-0Fh Processors (Order
# 48751) for more information about machine-specific registers, debug, and performance profiling tools.

Notational Convention

Instruction mnemonics, micro-instructions, and example code are set in mono-spaced font.

Specialized Terminology

The following specialized terminology is used in this document:

Smashing Smashing (also known as Page smashing) occurs when a processor produces a TLB entry
whose page size is smaller than the page size specified by the page tables for that linear
address. Such TLB entries are referred to as smashed TLB entries.
For example, when the Family 16h processor encounters a 1-Gbyte page size, it will smash
translations of that 1-Gbyte region into 2-Mbyte TLB entries, each of which translates a 2-
Mbyte region of the 1-Gbyte page.

Superforwarding Superforwarding is the capability of a processor to send (forward) the results of a load
instruction to a dependent floating-point instruction bypassing the need to write and then
read a register in the FPU register file.
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2 Microarchitecture of the Family 16h Processor
An understanding of the terms architecture, microarchitecture, and design implementation is important when
discussing processor design.

The architecture consists of the instruction set and those features of a processor that are visible to software
programs running on the processor. The architecture determines what software the processor can run. The
AMD64 architecture of the AMD Family 16h processor is compatible with the industry-standard x86 instruction
set.

The term microarchitecture refers to the design features used to reach the cost, performance, and functionality
goals of the processor.

The design implementation refers to a particular combination of physical logic and circuit elements that
comprise a processor that meets the microarchitecture specifications.

The AMD Family 16h processor employs a reduced instruction set execution core with a preprocessor that
decodes and decomposes most of the simpler AMD64 instructions into a sequence of one or two macro-ops.
More complex instructions are implemented using microcode routines.

Decode is decoupled from execution and the execution core employs a super-scalar organization in which
multiple execution units operate essentially independently. The design of the execution core allows it to
implement a small number of simple instructions which can be executed in a single processor cycle. This design
simplifies circuit design, achieving lower power consumption and fast execution at optimized processor clock
frequencies.

This chapter covers the following topics: 

Topic

Features

Instruction Decomposition

Superscalar Organization

Processor Block Diagram

Processor Cache Operations

Memory Address Translation

Optimizing Branching

Instruction Fetch and Decode

Integer Unit

Floating-Point Unit

XMM Register Merge Optimization

Load Store Unit

2.1 Features
This topic introduces some of the key features of the AMD Family 16h Processor.

The AMD Family 16h processor implements a specific subset of the AMD64 instruction set architecture.

Instruction set architecture support includes:

• General-purpose instructions, including support for 64-bit operands
• x87 Floating-point instructions
• 64-bit Multi-media (MMX) instructions
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• 128-bit and 256-bit single-instruction / multiple-data (SIMD) instructions. The following instruction subsets
are supported:

• Streaming SIMD Extensions 1 (SSE1)
• Streaming SIMD Extensions 2 (SSE2)
• Streaming SIMD Extensions 3 (SSE3)
• Supplemental Streaming SIMD Extensions 3 (SSSE3)
• Streaming SIMD Extensions 4a (SSE4a)
• Streaming SIMD Extensions 4.1 (SSE4.1)
• Streaming SIMD Extensions 4.2 (SSE4.2)
• Advanced Vector Extensions (AVX)
• Half-precision floating-point conversion (F16C)

• Carry-less Multiply (CLMUL) instructions
• Advanced Encryption Standard (AES) acceleration instructions
• Bit Manipulation Instructions (BMI)
• Move Big-Endian instruction (MOVBE)
• XSAVE / XSAVEOPT
• LZCNT / POPCNT
• AMD Virtualization™ technology (AMD-V™)

The AMD Family 16h processor does not support the following instruction subsets:

• Fused Multiply/Add instructions (FMA3 / FMA4)
• XOP instructions
• Trailing bit manipulation (TBM) instructions
• Light-weight profiling (LWP) instructions
• Read and write fsbase and gsbase instructions
• RDRAND, and INVPCID instructions

The AMD Family 16h processor includes many features designed to improve software performance. The
microarchitecture provides the following key features:

• Unified 1–2-Mbyte L2 cache shared by up to 4 cores
• Integrated memory controller with memory prefetcher
• 32-Kbyte L1 instruction cache per core
• 32-Kbyte L1 data cache per core
• Prefetchers for L2 cache, L1 data cache, and L1 instruction cache
• Advanced dynamic branch prediction
• 32-byte instruction fetch
• 2-way x86 instruction decoding with sideband stack optimizer
• Dynamic out-of-order scheduling and speculative execution
• Two-way integer execution
• Two-way address generation (1 load and 1 store)
• Two-way 128-bit wide floating-point and packed integer execution
• Integer hardware divider
• Superforwarding
• L1 Instruction TLB of 32 4-Kbyte entries and L1 Data TLB of 40 4-Kbyte entries
• Four fully-symmetric core performance counters
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2.2 Instruction Decomposition

The AMD Family 16h processor implements the AMD64 instruction set by means of macro-ops (the primary
units of work managed by the processor) and micro-ops (the primitive operations executed in the processor's
execution units). These operations are designed to include direct support for AMD64 instructions and adhere to
the high-performance principles of fixed-length encoding, regularized instruction fields, and a large register set.
This enhanced microarchitecture enables higher processor core performance and promotes straightforward
extensibility for future designs.

Instructions are marked as fastpath single (one macro-op), fastpath double (two macro-ops), or microcode
(greater than 2 macro-ops). Macro-ops can normally contain up to 2 micro-ops. The table below lists some
examples showing how instructions are mapped to macro-ops and how these macro-ops are mapped into one or
more micro-ops.

Table 1. Typical Instruction Mappings
Instruction Macro-ops Micro-ops Comments

MOV reg,[mem] 1 1: load Fastpath single

MOV [mem],reg 1 1: store Fastpath single

MOV [mem],imm 1 2: move-imm, store Fastpath single

REP MOVS [mem],[mem] Many Many Microcode

ADD reg,reg 1 1: add Fastpath single

ADD reg,[mem] 1 2: load, add Fastpath single

ADD [mem],reg 1 2: load/store, add Fastpath single

MOVAPD [mem],xmm 1 2: store, FP-store-data Fastpath single

VMOVAPD [mem],ymm 2 4: 2 × {store, FP-store-data} 256b AVX Fastpath double

ADDPD xmm,xmm 1 1: addpd Fastpath single

ADDPD xmm,[mem] 1 2: load, addpd Fastpath single

VADDPD ymm,ymm 2 2: 2 × {addpd} 256b AVX Fastpath double

VADDPD ymm,[mem] 2 4: 2 × {load, addpd} 256b AVX Fastpath double

2.3 Superscalar Organization

The AMD Family 16h processor is an out-of-order, two-way superscalar AMD64 processor. It can fetch, decode,
and retire up to two AMD64 instructions per cycle. The processor uses decoupled execution units to process
instructions through fetch/branch-predict, decode, schedule/execute, and retirement pipelines.

The processor can fetch 32 bytes per cycle and can scan two 16-byte instruction windows for up to two
instruction decodes per cycle. The decoder marks each instruction as fastpath single, fastpath double, or
microcode. The dispatcher can send up to two macro-ops to the retire unit for tracking, as well as sending the
corresponding micro-ops to the schedulers. These are upper limits, however. The actual number of bytes fetched
or scanned, instructions decoded, or macro-ops dispatched may be lower, depending on a number of factors such
as whether instructions can be broken up into 16-byte windows.

The processor uses decoupled independent schedulers, consisting of an integer ALU scheduler, an AGU
scheduler, and a floating-point scheduler. These three schedulers can simultaneously issue up to six micro-ops to
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the two integer ALU pipes, the load address generation pipe, the store address generation pipe, and the two FPU
pipes.

A macro-op is eligible to be committed by the retire unit when all corresponding micro-ops have finished
execution. The retire unit handles in-order commit of up to two macro-ops per cycle.

2.4 Processor Block Diagram

A block diagram of the AMD Family 16h processor is shown below.

Figure 1. Family 16h Processor Block Diagram

2.5 Processor Cache Operations

AMD Family 16h processors use three different caches to accelerate instruction execution and data processing:

• Dedicated L1 instruction cache
• Dedicated L1 data cache
• Unified L2 cache shared by up to four cores
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2.5.1 L1 Instruction Cache

The AMD Family 16h processor contains a 32-Kbyte, 2-way set associative L1 instruction cache. Cache line size
is 64 bytes; however, only 32 bytes are fetched in a cycle. Functions associated with the L1 instruction cache are
fetching cache lines from the L2 cache, providing instruction bytes to the decoder, prefetching instructions, and
predicting branches. Requests that miss in the L1 instruction cache are fetched from the L2 cache or, if not
resident in the L2 cache, from system memory.

On misses, the L1 instruction cache generates fill requests for the naturally-aligned 64-byte block that includes
the miss address and one or two sequential blocks (prefetches). Because code typically exhibits spatial locality,
prefetching is an effective technique for avoiding decode stalls. Cache-line replacement is based on a least-
recently-used replacement algorithm. The L1 instruction cache is protected from error through the use of parity.

Due to the indexing and tagging scheme used in the instruction cache, optimal performance is obtained when
two hot cache lines which need to be resident in the instruction cache simultaneously do not share the same
virtual address bits [20:6].

2.5.2 L1 Data Cache

The AMD Family 16h processor contains a 32-Kbyte, 8-way set associative L1 data cache. This is a write-back
cache that supports one 128-bit load and one 128-bit store per cycle. In addition, the L1 cache is protected from
bit errors through the use of parity. There is a hardware prefetcher that brings data into the L1 data cache to
avoid misses. The L1 data cache has a 3-cycle integer load-to-use latency, and a 5-cycle FPU load-to-use
latency.

The data cache natural alignment boundary is 16 bytes. A misaligned load or store operation suffers, at
minimum, a one cycle penalty in the load-store pipeline if it spans a 16-byte boundary. Throughput for
misaligned loads and stores is half that of aligned loads and stores since a misaligned load or store requires two
cycles to access the data cache (versus a single cycle for aligned loads and stores).

For aligned memory accesses, the aligned and unaligned load and store instructions (for example, MOVUPS/
MOVAPS) provide identical performance.

Natural alignment for both 128-bit and 256-bit vectors is 16 bytes. There is no advantage in aligning 256-bit
vectors to a 32-byte boundary on the Family 16h processor because 256-bit vectors are loaded and stored as two
128-bit halves.

2.5.3 L2 Cache

The AMD Family 16h processor implements a unified 16-way set associative L2 cache shared by up to 4 cores.
This on-die L2 cache is inclusive of the L1 caches in the cores. The L2 is a write-back cache. The L2 cache has a
variable load-to-use latency of no less than 25 cycles. The L2 cache size is 1 or 2 Mbytes depending on
configuration. L2 cache entries are protected from errors through the use of an error correcting code (ECC).

The L2 to L1 data path is 16 bytes wide; critical data within a cache line is forwarded first.

The L2 has four 512-Kbyte banks. Bits 7:6 of the cache line address determine which bank holds the cache line.
For a large contiguous block of data, this organization will naturally spread the cache lines out over all 4 banks.
The banks can operate on requests in parallel and can each deliver 16 bytes per cycle, for a total peak read
bandwidth of 64 bytes per cycle for the L2. Bandwidth to any individual core is 16 bytes per cycle peak, so with
four cores, the four banks can each deliver 16 bytes of data to each core simultaneously. The banking scheme
provides bandwidth for all four cores in the processing complex that can achieve the level that a private per-core
L2 would provide.
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2.6 Memory Address Translation

A translation-lookaside buffer (TLB) holds the most-recently-used page mapping information. It assists and
accelerates the translation of virtual addresses to physical addresses. A hardware table walker loads page table
information into the TLBs.

The AMD Family 16h processor utilizes a two-level TLB structure.

2.6.1 L1 Translation Lookaside Buffers

The AMD Family 16h processor contains a fully-associative L1 instruction TLB (ITLB) with 32 4-Kbyte page
entries and 8 2-Mbyte page entries.

The fully-associative L1 data TLB (DTLB) provides 40 4-Kbyte page entries and 8 2-Mbyte page entries.

2.6.2 L2 Translation Lookaside Buffers

The AMD Family 16h processor provides a 4-way set-associative L2 instruction TLB with 512 4-Kbyte page
entries.

The L2 data TLB provides two independent translation buffers which are accessed in parallel; a 4-way set-
associative buffer with 512 4-Kbyte page entries and a 2-way set-associative buffer with 256 2-Mbyte page
entries.

2.6.3 Hardware Page Table Walker

The hardware page table walker handles L2 TLB misses. Misses can start speculatively from either the
instruction or the data side. The table walker includes a 16-entry Page Directory Cache (PDC) to speed up table
walks.

The table walker supports 1-Gbyte pages by smashing the page into a 2-Mbyte window, and returning a 2-Mbyte
TLB entry. In legacy mode, 4-Mbyte entries are also supported by returning a smashed 2-Mbyte TLB entry.

INVLPG and INVLPGA instructions cause a flush of the entire TLB if any 1-Gbyte smashed entries have been
created since the last flush. System software may wish to avoid the use of 1-Gbyte pages. In a nested paging
environment, the processor does not create smashed entries if the nested page tables use 1-Gbyte pages but the
guest page tables do not use 1-Gbyte pages.

See the definition of the terms smashing and smashed in the Preface.

2.7 Optimizing Branching

Branching can reduce throughput when instruction execution must wait on the completion of the instructions
prior to the branch that determine whether the branch is taken. The Family 16h processor integrates logic that is
designed to reduce the average cost of conditional branching by attempting to predict the outcome of a branch
decision prior to the resolution of the condition upon which the decision is based. This prediction is used to
speculatively fetch, decode, and execute instructions on the predicted path. When the prediction is correct,
waiting is avoided and the instruction throughput is increased. The minimum branch misprediction penalty is 14
cycles.

The following topic describes the branch prediction hardware facilities of the processor. This is followed by a
discussion of how to align code within a loop to use the loop optimization hardware to its fullest advantage.

2.7.1 Branch Prediction

To predict and accelerate branches the AMD Family 16h processor employs:

52128  Rev. 1.1  March 2013 Software Optimization Guide for AMD Family 16h Processors

Chapter 2 Microarchitecture of the Family 16h Processor 13



• next-address logic
• branch target buffer
• branch target address calculator
• out-of-page target array
• branch marker caching
• return address stack (RAS)
• indirect target predictor
• advanced conditional branch direction predictor
• fetch window tracking structure

The following sections discuss each of these facilities in turn.

2.7.1.1 Next Address Logic

The next-address logic determines addresses for instruction fetch. When no branches are identified in the current
fetch block, the next-address logic calculates the starting address of the next sequential 32-byte fetch block. This
calculation is performed every cycle to support the 32 byte per cycle fetch bandwidth of the processor. When
branches are identified, the next-address logic is redirected by the branch target and branch direction prediction
hardware to generate a non-sequential fetch block address. The processor facilities that are designed to predict
the next instruction to be executed following a branch are detailed in the following sections.

2.7.1.2 Branch Target Buffer

The branch target buffer (BTB) is a two-level structure accessed using the fetch address of the current fetch
block. Each BTB entry includes information about a branch and its target. The L1 BTB is a sparse branch
predictor and maps up to the first two branches per instruction cache line (64 bytes), for a total of 1024 entries.
The two branches in the sparse predictor can be predicted in the same cycle. The L2 BTB is a dense branch
predictor and contains 1024 branch entries, mapped as up to an additional 2 branches per 8 byte instruction
chunk, if located in the same 64-byte aligned block.

Predicted-taken branches incur a 1-cycle bubble in the branch prediction pipeline when they are predicted by the
L1 BTB (sparse predictor). The L2 BTB (dense predictor) can predict one additional branch per cycle, with the
first dense branch prediction incurring a 2-cycle bubble and subsequent predictions incurring one additional
cycle per branch. Predicting long strings of branches in the same cache line through the dense predictor only
occurs as long as the branches are predicted not-taken, as the string will be broken by a predicted taken branch.

An additional 3-cycle latency is incurred for branch targets predicted through the indirect target predictor or
fixed up with the branch target address calculator. For example, an indirect branch predicted by the sparse
predictor will incur a 4-cycle bubble. The minimum branch misprediction penalty is 14 cycles.

The dense branch predictor can predict one additional branch per cycle, with the first dense branch prediction
incurring a 2-cycle bubble and subsequent predictions incurring one additional cycle per branch. Predicting long
strings of branches per line through the dense predictor only occurs as long as the branches are fall-through, as
the string will be broken by a predicted taken branch.

2.7.1.3 Branch Target Address Calculator

The branch target address calculator (BTAC) allows redirection if a direct branch target from the sparse or dense
predictor was mispredicted. The BTAC can only correct direct branch targets after all of the immediate bytes for
the branch instruction have been fetched.
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2.7.1.4 Out-of-Page Target Array

The out-of-page target array (OPG) holds the high address bits ([28:12]) for 32 targets that are outside the
current page for branches marked in the sparse BTB. Only sparse branches are eligible for out-of-page target
prediction. Branches marked by the dense predictor are not eligible for OPG target prediction. Direct dense
branches that are out-of-page will have their targets corrected by the branch target address calculator with a 4-
cycle penalty. Direct sparse branch targets that cross a 28-bit address block boundary (beyond the range of the
out-of-page target array) are also corrected by the branch target address calculator.

2.7.1.5 Branch Marker Caching

When a cache line is evicted, the sparse marker information for the first two branches in that cache line are
slightly compressed and written out into a subset of the L2 ECC bits—but only if the line contains instructions
exclusively. These markers are brought back into the core and reloaded into the sparse predictor if their L2 line
is reloaded into the L1 instruction cache before eviction from L2 or before the line is the target of a store. Dense
branches may or may not remain resident in the dense predictor when the L1 instruction cache is reloaded.
Sparse markers in the shared L2 can be shared with other cores that fetch from the same L2 line.

Software with extremely large instruction footprints, especially those with multiple threads that share instruction
cache lines, can take advantage of this property by targeting a branch density of no more than 2 branches per
cache line.

2.7.1.6 Return Address Stack

The Family 16h processor implements a 16-entry return address stack (RAS) to predict return addresses from a
near call. As calls are fetched, the address of the following instruction is pushed onto the return address stack.
Typically, the return address of the call is correctly predicted by the address popped off the top of the return
address stack. However, mispredictions sometimes arise during speculative execution that can cause incorrect
pushes and/or pops to the return address stack. The processor implements mechanisms that correctly recover the
return address stack in most cases. If the return address stack cannot be recovered, it is invalidated and the
execution hardware restores it to a consistent state.

The following commonly used coding practices optimized for other processor microarchitectures are not
optimum for the Family 16h processor:

CALL 0h

In prior processor families (for example, Family 10h ) a CALL 0h followed by a POP instruction was
recommended for 32-bit software to get the RIP value into a general-purpose register. CALL 0h was recognized
and treated specially, and the return address stack was kept consistent even though there was no return
instruction paired with the call. On the Family 16h processor, CALL 0h is not treated specially, and thus this
code sequence will cause the RAS to get out of sync due to the un-paired call. It is recommended to avoid the
use of CALL 0h in 32-bit software, and instead use a true subroutine call, a MOV reg,[RSP] instruction, and
a paired return to get the value of the RIP register into a general-purpose register.

REP RET

For prior processor families, such as Family 10h and 12h, a three-byte return-immediate RET instruction had
been recommended as an optimization to improve performance over a single-byte near-return. With processor
Families 15h and 16h, this is no longer recommended and a single-byte near-return (opcode C3h) can be used
with no negative performance impact. This will result in smaller code size over the three-byte method. For the
rationale for the former recommendation, see section 6.2 in the Software Optimization Guide for AMD Family
10h and 12h Processors.
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2.7.1.7 Indirect Target Predictor

The processor implements a 512-entry indirect target array used to predict the target of some non-RET indirect
branches. If a branch has had multiple different targets, the indirect target predictor chooses among them using a
26-bit global history structure.

Branches that have so far always had the same target are predicted by the indirect target predictor only if that
target crosses a 28-bit address block boundary. Single-target branches whose target does not cross a 28-bit
address block boundary are not predicted by the indirect target predictor; the out-of-page target array is used
instead to achieve lower branch prediction latency.

2.7.1.8 Conditional Branch Predictor

The conditional branch predictor is used for predicting the direction of conditional near branches. Only branches
that have been previously discovered to have both taken and fall-through behavior will use the conditional
predictor. The conditional branch predictor uses the same 26-bit global history used by the indirect target
predictor.

Conditional branches that have not yet been discovered to be taken are not marked in the sparse or dense
predictor. These branches are implicitly predicted not-taken. Conditional branches are predicted as always-taken
after they are first discovered to be taken. Conditional branches that are in the always-taken state are
subsequently changed to the dynamic state if they are subsequently discovered to be not-taken, at which point
they are eligible for prediction with the dynamic conditional predictor.

2.7.1.9 Fetch Window Tracking Structure

Fetch windows are tracked in a 16-entry FIFO from fetch until retirement. Each entry holds branch and cacheline
information for up to a full 64-byte cacheline (four 16-byte fetch windows). The first two branches in a cacheline
(those identified by the sparse predictor) are allocated into a single entry. Each additional branch in the cacheline
(those identified by the dense predictor) is allocated into a separate entry. If no branches are identified in a
cacheline, the fetch window tracking structure will use a single entry to track the entire cacheline.

If the fetch window tracking structure becomes full, instruction fetch stalls until instructions retire from the retire
control unit or a branch misprediction flushes some entries.

2.7.2 Loop Alignment

For the Family 16h processor loop alignment is not usually a significant issue. However, for hot loops, some
further knowledge of trade-offs can be helpful. Since the processor can read an aligned 32-byte fetch block every
cycle, to achieve maximum fetch bandwidth the loop start point should be aligned to 32 bytes. For very hot
loops, it may be useful to further consider branch placement. The branch predictor can process the first two
branches in a cache line in a single cycle through the sparse predictor. For best performance, any branches in the
first cache line of the hot loop should be in the sparse predictor. The simplest way to guarantee this for very hot
loops is to align the start point to a cache line (64-byte) boundary.

2.7.2.1 Encoding Padding for Loop Alignment

Aligning loops is typically accomplished by adding NOP instructions ahead of the loop. This section provides
guidance on the proper way to encode NOP padding to minimize its cost. Generally, it is beneficial to code fewer
and longer NOP instructions rather than many short NOP instructions, because while NOP instructions do not
consume execution unit resources, they still must be forwarded from the Decoder and tracked by the Retire
Control Unit.
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The table below lists encodings for NOP instructions of lengths from 1 to 15. Beyond length 8, longer NOP
instructions are encoded by adding one or more operand size override prefixes (66h) to the beginning of the
instruction.

      Length    Encoding
        1         90
        2         66 90
        3         0F 1F 00
        4         0F 1F 40 00
        5         0F 1F 44 00 00
        6         66 0F 1F 44 00 00
        7         0F 1F 80 00 00 00 00
        8         0F 1F 84 00 00 00 00 00
        9         66 0F 1F 84 00 00 00 00 00
        10        66 66 0F 1F 84 00 00 00 00 00
        11        66 66 66 0F 1F 84 00 00 00 00 00
        12        66 66 66 66 0F 1F 84 00 00 00 00 00
        13        66 66 66 66 66 0F 1F 84 00 00 00 00 00
        14        66 66 66 66 66 66 0F 1F 84 00 00 00 00 00
        15        66 66 66 66 66 66 66 0F 1F 84 00 00 00 00 00

The recommendation above is optimized for the AMD Family 16h processor.

Some earlier AMD processors suffer a performance penalty when decoding any instruction with more than 3
operand-size override prefixes. While this penalty is not present in Family 16h processors, it may be desirable to
choose an encoding that avoids this penalty in case the code is run on a processor that does have the penalty.

The 11-byte NOP is the longest of the above encodings that uses no more than 3 operand size override prefixes
(byte 66h). Beyond 11 bytes, the best single solution applicable to all AMD processors is to encode multiple
NOP instructions. Except for very long sequences, this is superior to encoding a JMP around the padding.

The table below shows encodings for NOP instructions of length 12–15 formed from two NOP instructions (a
NOP of length 4 followed by a NOP of length 8–11).

      Length    Encoding
        12        0F 1F 40 00 0F 1F 84 00 00 00 00 00
        13        0F 1F 40 00 66 0F 1F 84 00 00 00 00 00
        14        0F 1F 40 00 66 66 0F 1F 84 00 00 00 00 00
        15        0F 1F 40 00 66 66 66 0F 1F 84 00 00 00 00 00

The AMD64 ISA specifies that the maximum length of any single instruction is 15 bytes. To achieve padding
longer than that it is necessary to use multiple NOP instructions. For AMD Family 16h processors use a series of
15-byte NOP instructions followed by a shorter NOP instruction. If taking earlier AMD processor families into
account, use a series of 11-byte NOPs followed by a shorter NOP instruction.

2.7.2.2 Aligning Loops to Reduce Power Consumption

The Family 16h processor includes a loop buffer which can reduce power consumption when hot loops fit
entirely within it. The loop buffer is composed of four 32-byte chunks and is essentially a subset of the
instruction cache. Two of the 32-byte chunks must be in the lower 32 bytes of a 64-byte cache line, and the other
two must be from the upper 32 bytes of a cache line. Hot code loops that can fit within the loop buffer can save
power by not requiring the full instruction cache lookup.

Compilers may choose to align known-hot loops to a 32-byte boundary if doing so ensures that they fit
completely within the loop buffer. The loop buffer is a power optimization, not an instruction throughput
optimization, although in a system with Bidirectional Application Power Management or performance boost
enabled, this feature may allow sufficient power budget savings to enable boosting the clock rate to a higher
frequency.
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2.8 Instruction Fetch and Decode

The AMD Family 16h processor fetches instructions in 32-byte naturally aligned blocks. The processor can
perform an instruction block fetch every cycle. The first two branches in a 64-byte cache line are typically
allocated into the same fetch window tracking structure entry. Each additional branch will be allocated into a
separate fetch window tracking structure entry.

The fetch unit sends these bytes to the decode unit through a 16-entry Instruction Byte Buffer (IBB) in two 16-
byte windows. The IBB acts as a decoupling queue between the fetch/branch-predict unit and the decode unit.

The decode unit scans two of these windows in a given cycle, decoding a maximum of two instructions. The
decode unit also contains a sideband stack optimizer, which tracks the stack-pointer value. This optimization
removes the dependencies that arise during chains of PUSH and POP operations on the rSP register, and thereby
improves the efficiency of the PUSH and POP instructions.

2.9 Integer Unit

The integer unit consists of the following components:

• schedulers
• execution units
• retire control unit

The schedulers feed integer micro-ops to the execution units. The execution units carry out various types of
operations further described below. The retire control unit serves as the final arbiter for exception processing
versus instruction retirement.

2.9.1 Integer Schedulers

The schedulers can receive up to two macro-ops per cycle, where they are broken down into micro-ops. ALU
micro-ops are sent to the 20-entry ALU scheduler. Load and Store micro-ops are sent to the 12-entry address
generation unit (AGU) scheduler. Each scheduler can issue up to two micro-ops per cycle. The scheduler tracks
operand availability and dependency information as part of its task of issuing micro-ops to be executed. It also
assures that older micro-ops which have been waiting for operands are executed in a timely manner. Micro-ops
can be issued and executed out-of-order.

2.9.2 Integer Execution Units

The AMD Family 16h processor contains 4 integer execution pipes. There are 2 ALUs connected to the ALU
scheduler, one of which can also handle integer multiplies and divides. There are 2 AGUs connected to the AGU
scheduler, one AGU dedicated for load address generation handling (LAGU), and the other AGU dedicated for
store address generation handling (SAGU).

Figure 2 below provides a block diagram of the integer schedulers and execution units for the AMD Family 16h
processor core.
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Figure 2. Integer Schedulers and Execution Units

All integer operations can be handled in the ALUs (ALU0 and 1 are fully symmetrical) with the exception of
integer multiply, integer divide, and three-operand LEA instructions. While two-operand LEA instructions are
mapped as a single-cycle micro-op in the ALUs, three-operand LEA instructions are mapped to the store AGU
and have 2 cycle latency, with results inserted back in to the ALU1 pipeline.

The integer multiply unit can handle multiplies of up to 32 bits × 32 bits with 3 cycle latency, fully pipelined.
64-bit × 64-bit multiplies require data pumping and have a 6-cycle latency with a throughput rate of 1 every 4
cycles. If the multiply instruction has 2 destination registers, an additional one cycle latency and one cycle
reduction in throughput is required.

The radix-4 hardware integer divider unit can compute 2 bits of results per cycle.

2.9.3 Retire Control Unit

The retire control unit (RCU) tracks the completion status of all outstanding operations (integer, load/store, and
floating-point) and is the final arbiter for exception processing and recovery. The unit can receive up to 2 macro-
ops dispatched per cycle and track up to 64 macro-ops in-flight. A macro-op is eligible to be committed by the
retire unit when all corresponding micro-ops have finished execution. For most cases of fastpath double macro-
ops (like when an AVX 256-bit instruction is broken into two 128-bit macro-ops), it is further required that both
macro-ops have finished execution before commitment can occur. The retire unit handles in-order commit of up
to two macro-ops per cycle.

The retire control unit also manages internal integer register mapping and renaming. The integer physical
register file (PRF) consists of 64 registers, with between 20 to 31 mapped to architectural state or micro-
architectural temporary state. The remaining 44 to 33 registers are available for out-of-order renames. Generally
physical register renames are needed for instructions that write to an integer register destination (for example,
ADD), but not for those instructions that only write flags (for example, CMP) or perform stores to memory.

2.10 Floating-Point Unit

The AMD Family 16h processor provides native support for 32-bit single precision, 64-bit double precision, and
80-bit extended precision primary floating-point data types as well as 128-bit packed single and double precision
vector floating-point data types. The 256-bit packed single and double precision vector floating-point data types
are fully supported through the use of two 128-bit macro-ops per instruction. The floating-point load and store
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paths are 128 bits wide. As a result, the maximum throughput of both single-precision and double-precision
floating-point SSE vector operations has improved by a factor of two over the AMD Family 14h processor.

The floating-point unit (FPU) utilizes a coprocessor model. As such it contains its own scheduler, register files,
and renamers and does not share them with the integer units. It can handle dispatch and renaming of 2 floating-
point macro-ops per cycle, and the scheduler can issue 1 micro-op per cycle for each pipe. The floating-point
scheduler has an 18-entry micro-op capacity.

The floating-point retire queue holds up to 44 floating-point micro-ops between dispatch and retire. Any macro-
op that has a floating-point micro-op component, and that is dispatched into the integer retire control unit, will
be held in the floating-point retire queue until the macro-op retires from the integer retire control unit. Thus a
maximum of 44 macro-ops which have floating-point micro-op components can be in-flight in the 64-macro-op
in-flight window that the integer retire control unit provides.

Figure 3. Floating-point Unit Block Diagram

The FPU contains a 128-bit floating-point multiply unit (FPM) and a 128-bit floating-point adder unit (FPA).
The FPM contains two 76-bit × 27-bit multipliers, which means that double precision (64-bit) and extended
precision (80-bit) floating-point multiplication computations require iteration. A few selected floating-point
micro-ops, primarily logical/move/shuffle micro-ops, can execute in either the FPM or the FPA. The FPU also
contains two 128-bit vector arithmetic / logical units (VALUs) which perform arithmetic and logical operations
on AVX, SSE, and legacy MMX packed integer data, and a 128-bit integer multiply unit (VIMUL). The store/
convert unit (STC) primarily handles stores (up to 128-bit operand size), floating-point / integer conversions, and
integer / floating-point conversions. The register file and bypass network can also accept one 128-bit load per
cycle from the load-store unit.

There are two important organizational dimensions to understand with respect to the execution units. The first is
the pipeline binding. Pipe 0 contains vector integer ALU 0 (VALU0), the vector integer multiplier (VIMUL),
and the floating-point adder (FPA). Pipe 1 contains vector integer ALU 1 (VALU1), the store/convert unit, and

Software Optimization Guide for AMD Family 16h Processors 52128  Rev. 1.1  March 2013

20 Microarchitecture of the Family 16h Processor Chapter 2



the floating-point multiply unit (FPM). The floating-point scheduler can issue one micro-op to one unit per pipe
per cycle and provides logic to prevent pipeline hazards like resource contention on the result bus.

The second organizational dimension for execution units is forwarding domains. The FPU is divided into three
clusters, and forwarding between clusters requires an extra cycle in the bypass network. The three clusters are
the Floating-point Cluster (composed of the FPM and FPA units), the Integer Cluster (composed of the VALU0,
VALU1, and VIMUL units), and the Store / Convert Cluster (STC). When the result of an instruction executing
in one domain is consumed as input by a subsequent instruction executing in a different domain there is a one
cycle forwarding delay. This delay does not increase the time that either of the instructions is occupying the
execution units, but the scheduler will not attempt to schedule the second instruction earlier. Most FPU
instructions support local forwarding, which eliminates this delay when the consuming instruction executes in
the same domain. However some instructions (marked with the note "local forwarding disabled" in the latency
spreadsheet) do not support local forwarding and experience the forwarding delay even when the consuming
instruction executes in the same domain.

The following table summarizes the majority of instruction latencies in the FPU.

Table 2. Summary of Floating-point Instruction Latencies
Instruction Class Latency Throughput Execution Pipe Unit(s) Cluster

SIMD ALU (most) 1 2 / cycle Either VALU0, VALU1 Integer

Floating-point logical 1 2 / cycle Either FPA, FPM Floating-pt

SIMD IMUL 2 1 / cycle Pipe 0 VIM Integer

Floating-point multiply
single-precision

2 1 / cycle Pipe 1 FPM Floating-pt

Floating-point add 3 1 / cycle Pipe 0 FPA Floating-pt

Store/Convert (many) 3 1 / cycle Pipe 1 Store/Convert STC

Floating-point multiply
double-precision

4 1 / 2 cycles Pipe 1 FPM Floating-pt

Floating-point multiply
extended-precision
(x87)

5 1 / 3 cycles Pipe 1 FPM Floating-pt

Floating-point DIV/
SQRT

Iterative Iterative Pipe 1 FPM Floating-pt

Refer to the AMD64_16h_InstrLatency.xlsx spreadsheet described in Appendix A for more instruction latency
and throughput information.

2.10.1 Denormals

Denormal floating-point values (also called subnormals) can be created by a program either by explicitly
specifying a denormal value in the source code or by calculations on normal floating-point values. A significant
performance cost (more than 100 processor cycles) may be incurred when these values are encountered.

For SSE/AVX instructions, the denormal penalties are a function of the configuration of MXCSR and the
instruction sequences that are executed in the presence of a denormal value. Denormal penalties may occur in
two phases: usage of a denormal in a computation (pre-computation penalty), and production of a denormal
during the execution of an instruction (post-computation penalty).

A sequence of floating-point compute instructions may incur a pre-computation penalty when a denormal value
is encountered as an input. This penalty occurs on a floating-point computation instruction, such as [V]ADDPS,
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if the denormal value was loaded into an XMM or YMM register from memory by a pure load instruction (such
as [V]MOVUPS), or was produced by a vector-integer or logical instruction. The penalty will only occur once
per new denormal value in a sequence of floating-point instructions. A similar penalty does not occur when the
floating-point compute instruction is in load-op form and the memory operand is denormal, for example on
[V]ADDPS xmm0,[mem] where [mem] is a denormal value.

If a compiler can determine that a memory input to a floating-point sequence is denormal, it can avoid this pre-
computation penalty using a sequence such as: XORPS xmm0,xmm0; ADDPS xmm0,[mem] instead of
MOVUPS xmm0,[mem].

Vector ALU and logical instructions will also incur a pre-computation penalty if they encounter a denormal
input that was produced by a floating-point instruction.

If software does not require the precision that denormals provide, it can set MXCSR.DAZ (bit 6). Any denormal
input will then be treated as a zero without a pre-computation penalty.

Post-computation penalties occur when a floating-point compute instruction produces a denormal result and both
the precision exception and the underflow exception are masked in the MXCSR (that is, both bits 11 Precision
Mask and bit 12 Underflow Mask are set). If software does not require the precision that denormals provide, it
can set MXCSR.FTZ (bit 15). Any denormal output will then be converted to zero without a post-computation
penalty. Post-computation penalties generally cannot be eliminated by compilers.

If denormal precision is not required, it is recommended that software set both MXCSR.DAZ and MXCSR.FTZ.
Note that setting MXCSR.DAZ or MXCSR.FTZ will cause the processor to produce results that are not
compliant with the IEEE-754 standard when operating on or producing denormal values.

For x87 instructions both pre-computation and post-computation penalties are incurred when denormals are
encountered. A pre-computation penalty is incurred when loading denormal values from memory onto the x87
floating-point stack. A post-computation penalty is incurred when a floating-point compute instruction produces
a denormal result and both the precision exception and underflow exception are masked in the x87 floating-point
control word (FCW).

The x87 FCW does not provide functionality equivalent to MXCSR.DAZ or MXCSR.FTZ, so it is not possible
to avoid these denormal penalties when using x87 instructions that encounter or produce denormal values.
Programs that call x87 floating-point routines that internally produce denormal values will potentially incur this
penalty as well. To completely avoid this penalty, ensure that programs written using legacy x87 instructions do
not produce denormal values.

2.11 XMM Register Merge Optimization

The AMD Family 16h processor implements an XMM register merge optimization.

The processor keeps track of XMM registers whose upper portions have been cleared to zeros. This information
can be followed through multiple operations and register destinations until non-zero data is written into a
register. For certain instructions, this information can be used to bypass the usual result merging for the upper
parts of the register. For instance, SQRTSS does not change the upper 96 bits of the destination register. If some
instruction clears the upper 96 bits of its destination register and any arbitrary following sequence of instructions
fails to write non-zero data in these upper 96 bits, then the SQRTSS instruction can proceed without waiting for
any instructions that wrote to that destination register.

The instructions that benefit from this merge optimization are:

• CVTPI2PS

• CVTSI2SS (32-/64-BIT)
• MOVSS xmm1,xmm2

• CVTSD2SS
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• CVTSS2SD

• MOVLPS xmm1,[mem]

• CVTSI2SD (32-/64-BIT)
• MOVSD xmm1,xmm2

• MOVLPD xmm1,[mem]

• RCPSS

• ROUNDSS

• ROUNDSD

• RSQRTSS

• SQRTSD

• SQRTSS

2.12 Load Store Unit

The AMD Family 16h processor load-store (LS) unit handles data accesses. The LS unit contains two largely
independent pipelines enabling the execution of one 128-bit load memory operation and one 128-bit store
memory operation per cycle.

The LS unit includes a 16-entry memory ordering queue (MOQ). The MOQ receives both load and store
operations at dispatch. Loads leave the MOQ when the load has completed and delivered data to the integer unit
or the floating-point unit. Stores leave the MOQ when their address has been translated.

The LS unit utilizes a 20-entry store queue which holds stores from dispatch until the store data can be written to
the data cache.

The LS unit dynamically reorders operations, supporting both load operations bypassing older loads and loads
bypassing older non-conflicting stores. The LS unit ensures that the processor adheres to the architectural load
and store ordering rules as defined by the AMD64 architecture.

The LS unit supports store-to-load forwarding (STLF) when all of the following conditions are met:

• the store address and load address both start on the exact same byte
• the store operation size is the same or larger than the load operation size
• neither the load nor the store operation are misaligned

One STLF pitfall to avoid is aliases where store/load virtual address bits [15:4] match, but mismatch in the range
[47:16] because it can delay execution of the load.

The LS unit can track up to eight outstanding in-flight cache misses.

The load store pipelines are optimized for zero-segment-base operations. A load or store that has a non-zero
segment base suffers a one-cycle penalty in the load-store pipeline. Most modern operating systems use zero
segment bases while running user processes and thus applications will not normally experience this penalty.
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Appendix A Instruction Latencies
The companion file AMD64_16h_InstrLatency_1.1.xlsx distributed with this Software Optimization Guide
provides additional detailed information for the AMD Family 16h processor. The first worksheet in the
spreadsheet, "Overview," provides some useful reference information which is related to the second worksheet,
"Latencies." This appendix explains the columns and definitions used in the table of latencies. Information in the
spreadsheet is based on estimates and is subject to change.

A.1 Instruction Latency Assumptions

The term instruction latency refers to the number of processor clock cycles required to complete the execution of
a particular instruction from the time that it is issued. Throughput refers to the number of results that can be
generated in a unit of time given the repeated execution of a given instruction.

Many factors affect instruction execution time. For instance, when a source operand must be loaded from a
memory location, the time required to read the operand from system memory adds to the execution time.
Furthermore, latency is highly variable due to the fact that a memory operand may or may not be found in one of
the levels of data cache. In some cases, the target memory location may not even be resident in system memory
due to being paged out to backing storage.

In estimating the instruction latency and reciprocal throughput, the following assumptions are necessary:

• The instruction is an L1 I-cache hit that has already been fetched and decoded, with the operations loaded
into the scheduler.

• Memory operands are in the L1 data cache.
• There is no contention for execution resources or load-store unit resources.

Each latency value listed in the spreadsheet denotes the typical execution time of the instruction when run in
isolation on a processor. For real programs executed on this highly aggressive super-scalar family of processors,
multiple instructions can execute simultaneously; therefore, the effective latency for any given instruction's
execution may be overlapped with the latency of other instructions executing in parallel.

The latencies in the spreadsheet reflect the number of cycles from instruction issuance to instruction retirement.
This includes the time to write results to registers or the write buffer, but not the time for results to be written
from the write buffer to L1 D-cache, which may not occur until after the instruction is retired.

For most instructions, the only forms listed are the ones without memory operands. The latency for instruction
forms that load from memory can be calculated by adding the load latencies listed on the overview worksheet to
the latency for the register-only form. To measure the latency of an instruction which stores data to memory, it is
necessary to define an end-point at which the instruction is said to be complete. This guide has chosen
instruction retirement as the end point, and under that definition writes add no additional latency. Choosing
another end point, such as the point at which the data has been written to the L1 cache, would result in variable
latencies and would not be meaningful without taking into account the context in which the instruction is
executed.

There are cases where additional latencies may be incurred in a real program that are not described in the
spreadsheet, such as delays caused by L1 cache misses or contention for execution or load-store unit resources.

A.2 Spreadsheet Column Descriptions
The following describes the information provided in each column of the spreadsheet:

Column A Instruction

Instruction opcodes
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Columns
B–E

Opn

Instruction operands. The following notations are used in these columns:

• imm—an immediate operand (value range left unspecified)
• imm8—an 8-bit immediate operand
• m—an 8, 16, 32 or 64-bit memory operand (128 and 256 bit memory operands are always

explicitly specified as m128 or m256)
• mm—any 64-bit MMX register
• mN—an N-bit memory operand
• r—any general purpose (integer) register
• rN—an N-bit general purpose register
• xmmN—any xmm register, the N distinguishes among multiple operands of the same type

• ymmN—any ymm register, the N distinguishes among multiple operands of the same type

A slash denotes an alternative, for example m64/m32 is a 32-bit or 64-bit memory operand. The
notation "<xmm0>" denotes that the register xmm0 is an implicit operand of the instruction.

Column F Cpuid flag

CPUID feature flag for the instruction

Column G Macro Ops

Number of macro-ops for the instruction.
Any number greater than 2 implies that the instruction is microcoded, with the given number of
macro-ops in the micro-program. If the entry in this column is simply ‘ucode’ then the instruction
is microcoded but the exact number of macro-ops either has not been determined or is variable.

Column H Unit

Execution units. The following abbreviations are used:

• ALU—Arithmetic / logical unit.
• FPA—Floating-point add functional element within the floating-point cluster of the floating-

point unit.
• FPM—Floating-point multiply functional element in the floating-point cluster of the floating-

point unit.
• DIV—Integer divide functional element within the integer unit
• MUL—Integer multiply functional element within the integer unit.
• SAGU—Store address generation unit within the integer unit.
• STC—Store/convert functional element in the store/convert cluster of the floating point unit.
• VALU—Either of the vector ALUs (VALU0 or VALU1) within the integer cluster of the

floating-point unit.
• VIMUL—Vector integer multiply functional element within the integer cluster of the floating-

point unit.
• ST—Store unit.

In this column, a vertical bar indicates that the instruction can use either of two alternative
resources. A comma indicates that both of the comma-separated resources are required.
A number of instructions are floating-point load-ops which combine a transfer of data from the
integer unit to the floating-point unit with a floating point operation. This transfer is implemented
by storing the data from the integer unit to a private scratch memory location, then loading it
back into the floating point unit. The Unit column indicates this with "ST,LD-fpunit" where
fpunit is the floating point unit required for the load-op.
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The notation x2 or x3 appended to one of the above specifies the number of macro-ops executed
on that unit for the instruction. For example, FPMx2 indicates the instruction requires two
serialized macro-ops using the floating-point multiply unit.

Column I Latency

Instruction latency in processor cycles.
Where the latency is given as a number with a "+i", the latency listed is the latency of the
floating-point operation. The +i represents an additional 1 cycle transfer operation which moves
the floating point result to the integer unit. During this additional cycle the floating point unit
execution resources are not occupied and ALU0 in the integer unit is occupied instead.
Where the latency is given as an "f+" with a number, the latency listed is the latency of the
floating-point operation. The f+ represents an additional 6 cycle transfer operation which moves
a floating point operation input value from the integer unit to the floating point unit. During these
additional 6 cycles the floating point unit execution resources are not occupied and ST and LD in
the integer unit are occupied instead.
Refer to the section "Instruction Latency Assumptions" above for more information about this
column.

Column J 1/Throughput

Reciprocal throughput of the instruction.
This is the number of cycles from when an instruction starts to execute until a second instruction
of the same type can begin to execute. A value of 0.5 in the spreadsheet indicates that two such
instructions can be retired in the same clock cycle. This value is subject to the same assumptions
as the latency values.
Refer to the following section "Instruction Latency Assumptions" for more information.

Column K Notes

Additional information about the entry.
For a discussion of the note "local forwarding disabled," see "local forwarding disabled."
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